

Objectives

Develop an economic model of summer flounder production in a RAS based on pilot-scale grow-out trials at UNCW

- Conduct Sensitivity Analysis

- Conduct Monte Carlo Analysis

Model Development

System Scale

- 0.5-acre, 1-acre, and 3 x 1-acre systems
- Grow out Cycle
- 13.4 and 20-month cycles
- Tank Size – 15, 20, and 27 ft diameters
- Outdoor vs. Indoor
- Security Fence vs. Building
- Tank Type
 Fiberglass, Steel, Glass Coated Steel
- Fish Transfer Schedule (between tanks)

Model Development

- Biological, engineering, and economic parameters
- Capital, variable, fixed, and total costs
- Break even price and returns to management per grow out cycle; returns to management per year

System Scale

Scale of System	0.5-acre	1-acre	3 x 1-acre system:
15 ft diameter			
Number of Tanks	12	24	(3) 1-acre replicate:
Number of Gallons	47,568	95,136	(3) 1-acre replicate:
Final System Biomass (lbs)	24,000	48,000	(3) 1-acre replicate:
20 ft diameter			
Number of Tanks	10	20	(3) 1-acre replicate:
Number of Gallons	34,498	140,920	(3) 1-acre replicate:
Final System Biomass (lbs)	34,498	68,995	(3) 1-acre replicate:
27 ft diameter			
Number of Tanks	8	16	(3) 1-acre replicate:
Number of Gallons	102,752	205,504	(3) 1-acre replicate:
Final System Biomass (lbs)	54.000	108.000	(3) 1-acre replicate:

Grow-Out Cycle Length

- All models assume fish reach an average of 1.5 lbs (marketable size), with 80 % survival, and an FCR of 1.8 (average of all growth phases and lowest FCR during first 7 months of UNCW study)
- Two alternative grow-out periods analyzed:
 - 20-month cycle (UNCW grow-out period)
 - 13.4 month cycle (top 5% fastest growers reached marketable size in study)

Alterna	tive I	ank S	Izes
Scale of System	0.5-acre	1-acre	3 x 1-acre systems
motor			

Scale of System	0.5-acre	1-acre	5 x 1-acre systems
15 ft diameter			
Number of Tanks	12	24	(3) 1-acre replicates
Number of Gallons	47,568	95,136	(3) 1-acre replicates
Final System Biomass (lbs)	24,000	48,000	(3) 1-acre replicates
20 ft diameter			
Number of Tanks	10	20	(3) 1-acre replicates
Number of Gallons	34,498	140,920	(3) 1-acre replicates
Final System Biomass (lbs)	34,498	68,995	(3) 1-acre replicates
27 ft diameter			
Number of Tanks	8	16	(3) 1-acre replicates
Number of Gallons	102,752	205,504	(3) 1-acre replicates
Final System Biomass (lbs)	54.000	108.000	(3) 1-acre replicates

Outdoor vs. Indoor Outdoor System Security Fence (\$10,000/ acre) Camera System (\$3,500/ acre, \$50 monthly monitoring fee) Camera System (\$3,500/ acre, \$50 monthly Camera System (\$3,500/ acre,

\$369,914 (materials and labor)

Source: Heritage Building Co.

300 ft

ia)

X

W

		System Type		System Sca	ıle
Tank Size & Tank Type	Grow-Out Cycle (months)	(outdoor / indoor)	0.5-acre	1-Acre	3 x 1-Acre
5 ft Fiberglass Tank	20	outdoor	\$12.35	\$9.92	\$8.51
	13.4	outdoor	\$9.70	\$8.06	\$7.02
20 ft Fiberglass Tank	20	outdoor	\$10.21	\$8.24	\$7.10
	13.4	outdoor	\$7.73	\$6.36	\$5.48
27 ft Fiberglass Tank	20	outdoor	\$7.69	\$6.93	\$6.15
	20	indoor	\$6.48	\$5.59	\$5.25
	13.4	outdoor	\$6.40	\$5.57	\$4.96
	13.4	indoor	\$5.20	\$4.52	\$4.22
27 ft Steel Tank	20	indoor	\$6.38	\$5.46	\$5.17
	13.4	indoor	\$5.13	\$4.45	\$4.05
25 ft Aquacare Tank	13.4	indoor	\$5.34	\$4.74	\$4.43

Energy-Saving Fish Transfer Schedule

Fish Transfer Schedule	Grow-Out Cycle	Break-Even Price (\$)
Standard	20-month cycle	5.17
,	13.4-month cycle	4.05
Energy saving	20-month cycle	5.06
	13.4-month cycle	3.95

Economic Assumptions per 1-acre Unit

- Market value of 1-acre of coastal land (already owned) \$125,000
- Interest rate of alternative investment is %3.6
- 10-yr loan on building and equipment is %5.6
- Operating capital is borrowed at an interest rate of %7.6

Economic Assumptions per 1-acre Unit

- There is an owner which has a manager and technician at each facility
- Returns before taxes
- No waste disposal permit needed (less than 100,000 lbs per year, per 1-acre facility)
- Niche marketing (high end markets and live-haul pick up)
- No fee for drawing sea water
- No paid benefits to workers

Economic Parameters per 1-acre unit

Parameter	<u>13.4-month</u>	20-month
Product price (\$/lb)	5.00	5.00
Fingerling cost (\$/10 g fingerling)	1.25	1.25
Total fingerlings needed per cycle	90,000	90,000
Feed cost (\$/lb feed)	0.30	0.30
Electricity cost per kWh (\$/kWh)	0.05	0.05
Interest rate on 10-yr secured line of credit	7.6%	7.6%
Interest rate on unsecured bank line of creating	dit 5.6%	5.6%
Return on owner's next best investment	3.6%	3.6%

Engineering Parameters per 1-acre unit

Parameter	13.4-month	20-month	
# Months/cycle	13.4	20	
# Days/cycle	406	609	
Cycles/year	0.6	0.9	
Number of tanks	16	16	
System volume (gal)	205,504	205,504	
Flow rates (gal/min)	85	85	
Oxygen rates (ft ³ /cycle)	887	887	
Feed used (lbs)	196,128	196,128	
kWh used	282,662	528,527	
			and the part of the part
			CONTRACTOR NO.

Biological Parameters for both the 13.4 and 20-Month Cycle

Parameter	Pe
Initial size of fish	0.
Average harvest size	1.
Harvest density	0.
Initial biomass	1,
Final biomass	10
Survival	8
Feed Conversion Ration	1

r cycle	
02 lb	
5 lb	
53 lb/gal	
984 lbs	
8,000 lbs	
0%	
8	

estment
Equipment - \$302,681
- drum screen filters (\$40,000) - tanks/liners (\$36,544) - belt filter for waste (\$30,000) - generator (\$22,000) - air to air heat pumps (\$19,600)
\$36,000
ent \$718,595
ment %5.6

		Units/	Costs/Cycle		
	Unit Cost	13.4 mo cycle	13.4 mo	20 m	
Oxygen refill	\$0.40/100 ft3	887	355	355	
Oxygen tank rental	\$325/mo	13.4	4,355	6,512	
Bicarbonate	\$0.19/lb	19,613	3,726	3,726	
Energy	\$0.05/kwh	282,662	14,416	29,965	
Sludge floculators	\$1,742/cycle		1,742	1,742	
Waste removal	\$80/trip	18	19,296	19,296	
Fingerlings	\$1.25/fingerling	90,000	112,500	112,500	
Feed	\$0.30/lb	196,128	58,838	58,83	
Freshwater	\$20/mo	13.4	268	40	
Labor					
Technical assistant	\$12/hr	2,144	25,728	38,400	
Manager	\$20/hr	2,144	42,880	64,000	
Interest on Variable Costs			11,260	20,34	
Total Variable Costs			295,364	353,066	

	Unit cost	Cost	/cycle
	<u>(\$/mo)</u>	13.4 mo	20 mo
Opportunity Cost of Land (~125,000/acre)	375/mo	5,031	7,509
Electric Demand Charge	400/mo	5,360	8,000
Miscellaneous Overhead	300/mo	4,020	6,000
Insurance (fish)	378/mo	5,063	5,063
Insurance	455/mo	6,098	9,101
(Property, Liability, Workers Comp)			
Interest on Fixed Costs		814	1,722
Total Fixed Costs		26,385	37,39

Re	eturns (\$)			
The second s	Per/C	Per/Cycle		
	<u>13.4 mo</u>	20 mo		
Total Variable Costs	295,364	332,723		
Total Fixed Costs	26,385	37,395		
Building & Equipment loan	104,512	155,988		
Total Costs	426,116	546,232		
Total Revenue \$5.00/lb	540,000	540,000		
Returns to owner above variable costs	244,636	186,933		
Returns to owner above total costs	113,884	(6,232)		
Break-even price	3.95	5.06		

Sensitivity Analysis 13.4 north cycle % Change in Break-Even Price \$3.95/lb						
	Waste Removal Costs	Feed Costs	Initial Investment	Fingerling Costs	Growth Rates	
Baseline Parameter Value	\$21,038/cycle	\$0.30/ lb	\$718,595	\$1.25/fingerling	13.4-month	
Impact of 5% Change in Parameter on Break- Even Price	\$0.01	\$0.03	\$0.05	\$0.06	\$0.11	
Percent Change in Break- Even Price	0.25%	0.76%	1.27%	1.52%	2.78%	

Sensitivity Analysis 29 nonth cycle % Change in Break-Even Price \$5.06/lb							
	Electric Costs	Feed Costs	Fingerling Costs	Initial Investment	Growth Rates		
Baseline Parameter Value	0.051/kw	\$0.30/ lb	\$1.25/fingerling	\$718,595	20-month		
Impact of 5% Change in Parameter on Break- Even Price	\$0.02	\$0.03	\$0.05	\$0.06	\$0.17		
Percent Change in Break-Even Price	0.40%	0.59%	0.98%	1.19%	3.36%		

Monte Carlo Results

- Uncertain Parameters used: Electric Rates, Interest Rates, Output Price
 - Electric Rates: \$0.045 to \$0.08 per kWh (USDE, 2003)
 - Interest Rates: 3% to 15% (Federal Reserve, 2003)
 - Output Prices: \$4.50 to \$6.00 (Various Retail Markets, NC)

Monte Carlo Results: 13.4-month cycle

Discussion – Growth Rate

Fingerling Growth Rate

- 13. 4-month cycle achievable in 5% of UNCW study
- 20-month cycle reflects average current growth rate

Monte Carlo Simulation

- 20-month run: \$-17802/yr/facility or \$53,406/yr for all three 1-acre facilities
- 20-month run: 99% chance of negative returns
- 13.4 month run: returns always positive;
- \$60,252/yr/facility or \$180,756/yr all three

Discussion-Economy of Scale

Tank size and facility scale

Fingerling cost

- \$2.00 to \$1.25 depending on quantity purchased
- Market demand and EPA regulations limit scale
 - (Federal Register, 40 CFR Part 451)
 - Increase production cost ~\$300,000 with installation of BMP's
- Break even price decreased from \$12.35 to \$3.95

Discussion-Production Cost

Equipment Costs

- Integrate equipment where feasible
- 1 drumscreen filter for every 4 tanks
- ■reduce number of heat pumps
- Integration of bio-filtration may be risky

Fingerling Cost

- Currently single supplier
- Construct hatchery "in house" or supply multiple grow-out facilities

Discussion-Production Cost

Feed Costs

- Normally highest cost in commonly cultured species
- General expansion of mariculture industry may decrease cost

Waste Removal

- Flocculating waste and hauling off
- Waste could be used as fertilizer for saline tolerant plant nursery; cuts break-even price by ~ \$0.18 in both 13.4 and 20-month grow-out cycles

Discussion-Production Cost

Insurance

- Covers property liability, and workers compensation
- Fish mortality insurance = 4.5% of fingerling cost
 Covers loss of fish due to disease, mechanical and electrical failure, frost, and flood.

Conclusions

- The most cost effective system produces a break een price of \$3.53/lb, which is less than the current product price of \$5.00/lb, implying that flounder production using RAS could be profitable
- Sensitivity and Monte Carlo analyses reveal that growth rate is most critical component of financial performance
 - Future research needs focus on selective breeding for all female
 - culture, which may improve growth rates
 - Summer Flounder culture is promising at the 13.4-month cycle
 Note: The modern broiler chicken reaches slaughter in just 42 days.
 - Twice as fast as 30 years ago.

Conclusions

Future studies need focus on integrating recirculating components with multiple tanks

 Reduce capital costs, without compromising survivability

Reduce fingerling cost

- Specialized hatcheries

Acknowledgements

Program Assistance Dennis Delong, NCSU, Fish Barn Rebecca Dunning, NCDACS Debra Sloan, NCDACS Tom Ellis, NCDACS Sunee Sonu, NOAA Dr. Ronald Hodson, NCSU, NC Sea Grant Robert Wicklund, UNCW

Support Kenan Institute

USDA-CSREES North Carolina Sea Grant

Industry Assistance Spencer Dean, Southern Farm Tilapia Woody Wright, Farm Bureau Insurance Pat Hill, Heritage Building Systems Ace Potter, Waste Management James Ebeling, Freshwater Institute Sea Gailla

Dave Berry, The Hartford Insurance Chris Duffy, Great Bay Aquafarms Steve Wolfe Fiberglass Terry McCarthy, Water Management Tech Henry Gatz, Aquacare Environment Inc.

Aquaculture Program Staff Kim Copeland and Steve Truesdale

